A Simple Convention for the Specification of Linear
Algebra Function Prototypes in C++

ROSCOE A. BARTLETT
Sandia National Laboratories, Albuquerque NM 87185 USA

This short note describes a simple convention for the specification of C++4 function prototypes for
linear algebra operations with vectors and matrices (or general linear operators). This convention
leads to function prototypes that are derived directly from the mathematical expressions them-
selves (and are therefore easy to remember), allow for highly optimized implementations (through
inlining in C++), and do not rely on any sophisticated C++ techniques so that even novice C++
programmers can understand and step through the code in a debugger.

Categories and Subject Descriptors: ... [...]: ...
General Terms: Algorithms, Design, Performance, Standardization

Additional Key Words and Phrases: Object-Orientation, Vectors, Interfaces, C++, ...

1. INTRODUCTION

Linear algebra computations such as matrix-vector multiplication and the solution
of linear systems serve as the building blocks for numerical algorithms and consume
the majority of the runtime of numerical codes. These linear algebra abstractions
transcend details such as matrix storage formats (of which there are many) and
linear system solver codes (sparse or dense, direct or iterative). Primary linear
algebra abstractions include vectors and matrices and the operations that can be
performed with them. C++ abstractions for vectors and matrices abound.

Once convenient vector and matrix classes Vec and Mat are created, for instance,
there is a need to implement BLAS-like linear algebra operations. Given that C++
has operator overloading, it would seem reasonable to implement these operations
using a MATLAB®© like notation. For example, the matrix-vector multiplication
y = y+ ATz might be represented in C++ with the statement y = y + trans(A)*x
(the character ’ can not be used for transpose since it is not a C++ operator).
MATLAB is seen by many in the numerical computational community to be the
ideal for the representation of linear algebra operations using only ASCII characters
[Demmel, J. 1997]. The advantages of such an interface are obvious; It is almost
the same as standard mathematical notation, which makes it very easy to match
the implementation with the operation for the application programmer, and makes

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Com-
pany, for the United States Department of Energy under Contract DE-AC04-94A1L85000.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2008 ACM 0098-3500/2008/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008, Pages 1-6.

2 . Roscoe Bartlett et al.

the code much easier to understand. The primary disadvantage for this approach in
C++ is that the straightforward implementation requires a lot of overhead because
operators are implemented in a pair-wise fashion involving temporaries. For exam-
ple, for the operationy = y + trans(A)#*x, a temporary matrix (n? overhead) and
two temporary vectors (2n overhead) would be created by the compiler. Specifi-
cally, the compiler would perform the following operations: Mat t1 = trans(A);
Vec t2 = tl*x; Vec t3 = y + t2; y = t3;. Attempts have been made to come
up with a strategy in C4++ to implement operations like y = y + trans(A)*x in
a way where little overhead is required beyond a direct BLAS call [Parker, B.
1997]. It is relatively easy to implement these operator functions with only a lit-
tle constant-time overhead for a small set of linear algebra operations [Stroustrup,
B. 1997, pages 675-677]. However, for more elaborate expressions, a compile-time
expression parsing method is needed. Some have advocated preprocessing tools,
while others have looked at using C++’s template mechanisms [Veldhuizen, T. and
E. Gannon 1998], [Parker, B. 1997]. In any case, these methods are complex and
not trivial to implement. Methods based on runtime parsing are also possible but
add more of a runtime penalty. Aliasing is also another big problem. For example,
suppose we allow users to write expressions like

y=z+v+aM? + py.

An efficient parser that tries to minimize temporaries will have to scan the entire
expression and realize that y = By must be performed first and then no temporaries
are needed. A naive parser may perform y = z first and then result in an incorrect
evaluation. The problem is that the more efficient the parser the more complicated
it is and the harder it will be for inexperienced users to debug through this code.

Another problem is that operator-overloading implementations in C++ can never
generate error messages of the same quality as MATLAB. Consider an expression
of the form r = A*x + B*y + C*xz where the matrix B and the vector y are mis-
matched. Since MATLAB is an interpretive language, the MATLAB interpreter
can give a very good error message that gives the file name, the line number and
even the statement that caused the error. Generating this type of error using op-
erator overloading in C++ is generally not possible. One would have at the very
least to open a debugger, set a breakpoint, and then step back up the call stack
in order to get the same information. Therefore, operator overloading using the
current C++ standard will never achieve the same level of usability as operator
syntax in MATLAB.

Without using operator overloading to allow application code to use syntax like y
= y + trans(A)*x, how can linear algebra operations be implemented efficiently?
The simple answer is to use regular functions (member or non-member) inlined to
call BLAS-like implementations. For example, for the operation y =y + ATz, one
might provide a function like add_tomultiply_transpose(A,x,&y);. It is trivial
to implement such a function to call the BLAS, for instance, with no overhead if
a good inlining C++ compiler is used. The problem with using functions is that
it is difficult to come up with good names that users can remember. For example,
the above operation has been called Blas Mat_Vec Mult(...) in LAPACK++
[Pozo, R. 1996], vm_multadd(...) in Meschach++ [Roberts, S., et. al. 1996], and
mult(...) in MTL [Lumsdanie, A. and J. Siek 1998]. Even knowing the names of

ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.

Linear Algebra Function Prototyes in C++ . 3

Function Call

y += alpha * A’ * x y «a AT z
1! A 1 1 !
PN —_——
VvV’ p- S t MtV (&y, alpha, A, TRANS, x) = Vp_StMtV(&y,alpha,A,TRANS,x)

Function Prototype
void Vp_StMtV(Vec* y, Scalar alpha, const Mat& A, Transp A_trans, const Vec& x);

Fig. 1. Example of the linear algebra naming convention for y+= aATz

these functions is not enough. You must also know the order the arguments go in
and how are they passed.
ToDo: Mention recent ACM TOMS article

2. A CONVENTION FOR SPECIFYING FUNCTION PROTOTYPES

Here we consider a convention for constructing C++ function prototypes. Function
prototypes are constructed according to this convention where the name of the
function and the order of the arguments is easily composed from the mathematical
expression itself. To illustrate the convention, consider the operation y = y+a AT x.
First, rewrite the operation in the form y+= aA”z (this is well understood by C,
C++ and Perl programmers). Next, translate into MATLAB-like notation as y +=
alphaxA’*x (except MATLAB does not have the operator +=). Finally, for Vec
objects y and x and a Mat object A, the function call and its prototype are shown in
Figure 1. In this function prototype, type Transp is a simple C++ enum with the
values TRANS or NOTRANS, and the type Scalar can be a simple typedef to double
or might be a template argument.

A summary of this convention is shown in Figure 2. Given this convention, it
is easy to go back and forth between the mathematical notation and the function
prototype. For example, consider the function call and its mathematical expression

Mp_StMtM(&C, alpha, A, NOTRANS, B, TRANS)
=
C+= aABT.

One difficulty with this convention is dealing with Level-2 and Level-3 BLAS that
have expressions such as

C=aop(A)op(B)+ S C (xGEMM).
-

Given 8 # 1 we can not simply rewrite the above BLAS operation using +=.
To deal with this problem, 8 is moved to the end of the argument list and has a
default value of 1.0 as

ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.

4 . Roscoe Bartlett et al.

Operation Character (Lower Case)
=(assignment,equals) _(underscore)

+=(plus equals) p-

-=(minus equals) m_

*=(times equals) t-

+(addition,plus) P

subtraction,minus)

~(
*(multiplication,times) t

Operand Type Character (Upper Case) Argument(s)

Scalar S Scalar

Vector \ (rhs) const Veck
(Ihs) Vec*

Matrix M (rhs) const Mat&, Transp
(lhs) Mat*

Fig. 2. Naming convention for linear algebra functions in C++

Mp_StMtM(&C, alpha, A, A_trans, B, B_trans , beta).
——

default to 1.0
Only exact equivalents to the Level-2 and Level-3 BLAS need be explicitly im-
plemented (i.e. Vp_StMtV(...) and Mp_StMtM(...)). Functions for simpler ex-
pressions can be generated automatically using template functions. As an example,
consider the linear algebra operation and its function call

y = Az (xGEMV — y = aop(A)z + By)
=
VMtV(&y, A, NOTRANS, x).

In the above example, the template function V.MtV (...) can be inlined to call
Vp_StMtV(...) which in turn can be inlined to call the BLAS function DGEMV(. . .),
for instance. The use of these automatically generated functions makes the applica-
tion code more readable and also allows for specialization of these simpler operations
later if desired. The implementation of the above template function V.MtV (...) is
trivial and is

template<class M, class V>
inline void V_MtV(Vx y, const M& A, Transp A_trans, const V& x)
{
Vp_StMtV(y, 1.0, A, A_trams, x, 0.0);
}
Similar templated functions can also be generated for the partial simplifications
VpMtV(...) and V_StMtV(...).

Longer expressions such as y = aATx + Bz are easily handled using multiple
function calls such as

ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.

Linear Algebra Function Prototyes in C++ . 5

y=oaATz + Bz

_—

V_StMtV(&y, alpha, A, TRANS, x);
VpMtV(&y, B, NOTRANS, z);

As stated above, only the base BLAS operations Vp_StMtV(...) (e.g. xGEMV(...))
and Mp_StMtM(...) (e.g. xGEMM(...)) must be implemented for the specific vector
and matrix types Vec and Mat. For example, if these are simple encapsulations of
BLAS compatible serial vectors and matrices (e.g. TNT style) then the call the
the BLAS functions can be written as template functions for all serial dense vector
and matrix (column oriented) classes. For example, an inlined call to DGEMV(. . .)
can be performed as

template<class M, class V>
inline void Vp_StMtV(V* y, Scalar alpha, const M& A, Transp A_trans
, const V& x, Scalar beta = 1.0)

{
DGEMV(A_trans == NOTRANS ? °N’ : ’T’, rows(A), cols(A), alpha
LEA(1,1), &A(1,2) - &A(1,1), &x(1), &x(2) - &x(1), beta
L (xy) (1), &(xy) (2) - &(xy) (1));
}

Of course the above function would also have to handle the cases where rows (A)
and/or cols(A) was 1 but the basic idea should be clear. By calling rows(...) and
cols(...) as nonmember functions, they can be overloaded to call the appropriate
member functions on the matrix object since there is no standard names for these.

When Vec and Mat are polymorphic types, one can use a common trick to imple-
ment Vp_StMtV(...) and Mp_StMtM(...) using member functions. For example,
Vp-StMtV(...) can be implemented as

class Vec { ... };
class Mat {
public:
virtual void apply(Vec* y, Scalar alpha, Transp A_trans
, const Vec& x, Scalar beta) const = 0;

};

inline void Vp_StMtV(Vec* y, Scalar alpha, const Mat& A, Transp A_trans

, const Vec& x, Scalar beta = 1.0)

A.apply(y,alpha,A_trans,x,beta);

ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.

6 . Roscoe Bartlett et al.

Using these inlined non-member functions there is no extra overhead beyond the
unavoidable virtual function calls. In this way there is consistent calling of linear
algebra operations irregardless whether the vector and matrix objects are concrete
or abstract.

This convention can, of course, also be used for level-1 vector-vector operations
like Vt_S (&y,alpha) for y = ay, V.V (&y,x) for y = =, Vp_StV(...) fory = y+ax,
V_VpV(&z,x,y) for z = 2 +y, and V.VmV (&z,x,y) for z = x — y. One can write as
many of these convenience wrapper functions as desired.

3. CONCLUSIONS

In summary, this convention makes it easy to write out correct calls to linear algebra
operations without having to resort to complex operator-overloading techniques.
After all, the main appeal for operator overloading is to make it easy for users to
remember how the call linear algebra operations and to make written code easier
to read and interpret. The convention described in this note meets both of these
goals and also results in code that is easy for novice C++ developers to understand
and debug through. Debugging code can easily take longer than writing it in the
first place. When concrete abstractions of dense linear algebra types are used, it
was shown that these functions do not have to impose any overhead beyond direct
BLAS calls if inlining is used. When polymorphic vector and matrix types are
used, inlining to call the virtual functions also results in no extra overhead. This
convention has been used in the development of MOOCHO [?] and in Thyra [?].

REFERENCES

DEMMEL, J. 1997. Applied Numerical Linear Algebra. STAM.

LuMSDANIE, A. AND J. SIEK. 1998. The Matrix Template Library.
http://www.lsc.nd.edu/research/mtl/.

PARKER, B. 1997. Template Composite Operators. http://www.gil.com.au/bparker.

Pozo, R. 1996. LAPACK++ v 1.1: High Performance Linear Algebra User’s Guide. NIST.

ROBERTS, S., ET. AL. 1996. Meschach++: Matrix Computations in C++.
http://www.netlib.org/c/meschach/.

STROUSTRUP, B. 1997. The C++ Programming Language, 3rd edition. Addison-Wesley, New
York.

VELDHUIZEN, T. AND E. GANNON. 1998. Active Libraries: Rethinking the Roles of Compilers and
Libraries. http://oonumerics.org/blitz/papers/.

Received: 777; revised: 777; accepted: 777

ACM Transactions on Mathematical Software, Vol. V, No. N, January 2008.

